Tpo-gefest.ru

ТПО Гефест
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как выбрать светодиодную лампу

Как выбрать светодиодную лампу

В отличие от обычных ламп накаливания, различающихся только мощностью и качеством изготовления, светодиодные лампы имеют много параметров, влияющих на качество и безопасность освещения. Я расскажу об основных параметрах светодиодных ламп и порекомендую, какие лампы лучше подойдут для дома.

Мощность

Светодиодные лампы не стоит выбирать по мощности — эффективность у различных ламп разная и лампы с одинаковой мощностью могут сильно отличаться по яркости: лампы, заменяющие обычную лампочку-грушу 60 Вт могут иметь мощность от 6 до 10 Вт, лампы, заменяющие «свечку» 40 Вт могут иметь мощность от 4 до 7 Вт.

Эквивалент мощности

Большинство производителей светодиодных ламп указывает эквивалент мощности лампы накаливания. Например, на упаковке может быть указано, что лампа имеет мощность 6 Вт и светит, как лампа накаливания 60 Вт. Некоторые производители указывают этот эквивалент достаточно некорректно, поэтому я рекомендую всегда обращать внимание не на эквивалент мощности, а на световой поток.

Световой поток

Яркость лампы, а точнее количество света, которое даёт лампа, определяется параметром «световой поток», измеряющимся в люменах (лм, lm).
Для обычных ламп (груши, свечки) можно приблизительно прикинуть необходимый световой поток, умножив мощность обычной лампы накаливания на 10: 40 Вт — 400 лм, 60 Вт — 600 лм, 100 Вт — 1000 лм. Таким образом, если вы хотите купить светодиодную лампу на замену 60-ваттной лампе накаливания, ищите лампы со световым потоком не менее 600 лм.
К сожалению, многие производители завышают значение светового потока. В реальности он может оказаться даже вдвое ниже заявленного и лампа, которая должна светить, как 60-ваттная лампа накаливания будет светить лишь, как 25-ваттная. Реальные значения светового потока можно узнать только по результатам независимого тестирования.

Цветовая температура

Ламы накаливания светят тёплым желтоватым светом с цветовой температурой 2700-2800К. Если вы хотите, чтобы светодиодная лампа давала свет, максимально похожий на свет лампы накаливания, выбирайте лампы с цветовой температурой 2700-2800К. Многие светодиодные лампы имеют цветовую температуру 3000К — это более белый, но не менее комфортный свет. Свет ламп с цветовой температурой 4000К называют «нейтральный белый». Такой свет больше подходит для офисных помещений. Считается, что белый свет способствует повышению работоспособности, а желтый помогает расслабиться и отдохнуть, поэтому дома в вечернее время свет должен быть тёплым с цветовой температурой не выше 3000К. Лампы с холодным белым светом 5000К и выше предназначены для использования в хозяйственных помещениях. Дома им не место.

Напряжение

Выпускаются светодиодные лампы, работающие от сети 220-230 В и от источников питания 12 вольт.
В светодиодных лампах используется драйверы (электронные платы, установленные в цоколе лампы) разных типов. Во многих лампах используются драйверы со стабилизацией. Яркость таких ламп не меняется при колебаниях напряжения сети в очень больших пределах. Некоторые из ламп светят одинаково ярко при снижении напряжения сети с 230 до 70 вольт. К сожалению, производители часто не указывают реальный диапазон напряжения: на упаковке лампы может быть написано 220-240 В или 230 В, а в реальности лампа горит при гораздо меньшем напряжении.

Лампы на 12 вольт выпускаются с цоколями E27, E14, GU5.3, G4 и могут работать как от постоянного, так и от переменного напряжения. Большинство микроламп с цоколем G4 и некоторые лампы-споты с цоколем GU5.3 при работе от переменного напряжения имеют очень высокую пульсацию света, вредную для глаз и самочувствия в целом. Для того, чтобы избежать пульсации таких ламп, придётся заменить трансформаторы на блоки питания постоянного тока.

Индекс цветопередачи (CRI, Ra)

Свет светодиодной лампы отличается от света лампы накаливания по спектру. Хоть свет и выглядит белым, некоторых цветовых компонентов в нём больше, а некоторых меньше. Индекс цветопередачи показывает, насколько равномерен уровень разных цветовых компонентов в свете. При низком Ra хуже видны оттенки. Такой свет визуально неприятен, причём понять, что в нём не так, очень сложно. У ламп накаливания и солнца Ra выше 98, у хороших светодиодных ламп он больше 80, у очень хороших больше 90. Лампы с Ra ниже 80 в жилых помещениях лучше не использовать.
К сожалению, некоторые производители завышают Ra: на коробке пишут Ra > 80, а фактически он лишь немного превышает 70 и такие лампы лучше не использовать в жилых помещениях.

Работа с выключателем, имеющим индикатор

Многие светодиодные лампы некорректно работают с выключателями, имеющими индикаторную лампочку или светодиод. Когда выключатель выключен, такие лампы вспыхивают или слабо горят. Лишь некоторые производители указывают, работают ли их лампы с такими выключателями.

Поддержка работы с диммером

Большинство светодиодных ламп не могут работать с регуляторами яркости (диммерами), но выпускаются специальные диммируемые светодиодные лампы, поддерживающие регулировку яркости. Такие лампы работают с большинством обычных диммеров для ламп накаливания, но минимальный уровень яркости при диммировании может быть довольно высоким (около 20%). Для того, чтобы лампы при диммировании могли снижать яркость почти до нуля, необходимо использовать специальные диммеры для светодиодных ламп.

Пульсация света

Пульсация света приводит к усталости глаз и общему ухудшению самочувствия, поэтому очень важно использовать только те лампы, у которых нет видимой пульсации. По СНИП для различных типов помещений нормируется пульсация света в диапазоне 5-20%, фактически для человека незаметна пульсация до 35%. Лишь некоторые производители пишут на упаковке ламп «без пульсации». У других ламп уровень пульсации может быть низким, но в параметрах лампы это никак не указывается. Наличие пульсации можно проверить с помощью «карандашного теста» или посмотрев на свет лампы через камеру смартфона (если пульсация есть, на экране будут видны полосы).

Угол освещения

Обычные лампы накаливания светят во все стороны, галогенные споты дают узкий пучок света. Со светодиодными лампами всё сложнее.

Многие светодиодные лампы, заменяющие обычные лампы накаливания, имеют колпак в форме полусферы такого же диаметра, как корпус. Такие лампы практически не светят назад и если они направлены вниз, потолок будет оставаться тёмным, что может быть некомфортно. К счастью, в последнее время появилось много ламп, прозрачный колпак которых больше корпуса и за счёт этого лампа немного светит и назад.
Лампы на светодиодных нитях (filament) имеют такой же большой угол освещения, как обычные лампы накаливания.

Большинство светодиодных спотов (ламп для подвесных потолков с цоколями GU10 и GU5.3) светят рассеянным светом с углом около 100 градусов и ослепляют из-за слишком широкого угла (галогенные споты дают узкий луч света с углом освещения около 30 градусов). Только некоторые светодиодные споты имеют такой же узкий угол освещения, как у галогенных ламп. Такие лампы легко распознать по наличию линз перед светодиодами.

Тип лампы

В обычной светодиодной лампе несколько светодиодов накрыты колпаком (обычно матовым). Иногда ещё встречаются устаревшие лампы-кукурузы, вся поверхность которых покрыта множеством мелких светодиодов, напоминающих зёрна кукрузы в початке. Новый тип светодиодных ламп — филаментные лампы (или лампы на светодиодных нитях). Такие лампы внешне очень похожи на лампы накаливания — у них стеклянная колба и широкий угол освещения. Внутри лампы размещены светодиодные нити — керамические или металлические пластины, на которых размещено множество мелких светодиодов в ряд.

Такие лампы более эффективны, чем обычные (они дают более 100 Лм/Вт) и их свет максимально похож на свет ламп накаливания. Большинство филаментных ламп прозрачные, но есть и матовые. Недостаток таких ламп — более низкий срок службы по сравнению с обычными светодиодными лампами.

Срок службы

Производители указывают срок службы ламп от 10 000 до 50 000 часов. Фактически, никто не знает, сколько в реальности прослужит лампа, ведь технологии совершенствуются очень быстро и все сроки службы рассчитываются теоретически. Рекомендую обращать внимание не на указанный срок службы, а на срок гарантии, в течение которого можно обменять лампу, вышедшую из строя.

Гарантия

Все светодиодные лампы имеют гарантию от 1 года до 5 лет. Магазины обязаны менять лампы по гарантии в течение этого срока, если они вышли из строя. Кроме того, по закону о защите прав потребителей, вы можете вернуть лампы в магазин в течение 14 дней после покупки, если они вам не понравились при условии наличия неповреждённой упаковки и, по возможности, чека.

Читайте так же:
Выключатель со светодиодной подсветкой для энергосберегающих ламп

Как выбрать хорошие лампы

Выбор светодиодных ламп — задача непростая. Даже у самых именитых производителей, встречаются лампы с недопустимо высокой пульсацией. У некоторых производителей часть ламп хорошие, а часть не очень. Для того, чтобы точно знать, какие лампы хорошие, а какие нет, я создал проект по независимому тестированию светодиодных ламп lamptest.ru. Я тестирую лампы и публикую результаты измерения всех основных параметров. Сейчас протестировано уже более 1000 моделей ламп 75 брендов и работа продолжается. Поэтому самый простой вариант выбора — найдите интересующую вас лампу на lamptest и посмотрите на её измеренные параметры:

• коэффициент пульсации не должен превышать 35% (а лучше, чтобы он был менее 10%);
• индекс цветопередачи должен быть не менее 80 (для хозяйственных помещений можно от 70);
• световой поток должен быть не меньше, чем у той лампы накаливания, которую вы хотите заменить светодиодной;
• если у вас установлен выключатель с индикатором, убедитесь, что лампа может с ним корректно работать.
• если у вас установлен регулятор яркости, убедитесь, что лампа поддерживает диммирование;
• если вы выбираете лампы-споты, обратите внимание на угол освещения. Лампы с углом более 50° будут ослеплять при установке в потолке большого помещения.

Если интересующей вас лампы пока не на сайте lamptest.ru, рекомендую руководствоваться следующими критериями выбора:

• если на упаковке указано «без пульсации» с большой вероятностью пульсация света лампы будет менее 5%. Если это не указано и есть возможность включить лампу, посмотрите на её свет через камеру мобильного телефона. По экрану не должны идти полосы. Попробуйте покрутить карандашом или другим длинным предметом перед лампой. Если контуры карандаша размыты — пульсаций нет, если вы видите «несколько карандашей» есть видимая пульсация и такую лампу покупать не стоит.
• Посмотрите, как выглядит кожа руки под светом лампы. Если цвет сероватый — у лампы низкий индекс цветопередачи и её лучше не покупать.
• Сравните яркость света лампы с яркостью света лампы накаливания или другой лампы, яркость которой вам известна. Приблизительное сравнение можно сделать с помощью датчика света большинства смартфонов на Android. Установите любое приложение-люксметр (например Sensors Multitool и там выберите «light»). Датчики всех смартфонов не откалиброваны, поэтому значения у всех смартфонов будут совершенно разными, но для сравнения это не важно. Заранее возьмите дома матовую лампу такой же формы, как вы хотите купить, запустите приложение и прислоните смартфон датчиком к лампе (датчик находится над экраном слева или справа, подносите его к верхушке обычных ламп и к центру бока ламп-свечек). Запишите получившееся значение. В магазине включите лампу, подождите хотя бы минуту (при прогреве светодиодные лампы теряют до 12% яркости), запустите приложение и прислоните датчик к лампе. Сравните значение с измеренным дома. Теперь вы почти точно будете знать, ярче измеряемая лампа, чем та, которая была измерена дома, или тусклее.
• Обратите внимание на дату производства лампы (у большинства ламп она указана на корпусе). Если лампа выпущена более, чем два года назад, лучше её не покупайте — прогресс идёт очень быстро и современные лампы лучше тех, которые выпускались раньше.
• Обратите внимание на гарантийный срок. Если гарантия большая (3-5) лет, вероятность выхода лампы из строя гораздо меньше.
• После покупки сфотографируйте чек. Если лампа выйдет из строя, эта фотография поможет вам поменять её по гарантии, если обычный чек потеряется или выцветет.

Лампа накаливания будет хорошо. 220 В AC — это среднеквадратичное значение для среднеквадратичного значения. Амплитуда синуса будет 2 — √ 2 выше или на 310 В. Но среднеквадратичное значение говорит вам, какое эквивалентное напряжение постоянного тока вам потребуется для получения той же мощности, так что это именно то, что вам нужно. Лампа будет использовать ту же мощность и свет, что и при 220 В переменного тока, что и постоянный ток.

Включение лампы накаливания может привести к большому пиковому току: сопротивление холоду составляет лишь примерно одну десятую от того, что есть, когда лампа горит, а когда приложенное напряжение в это время высокое, лампа может сломаться. Возможно, вы заметили, что если лампочка разбивается, она всегда срабатывает при включении. Так что при переменном токе наихудший случай — когда вы включаете в пике синуса, при 310 В. Но будет много случаев, когда напряжение при включении будет ниже, даже ноль, если вы просто включите его в течение нуля. пересечение синуса. На самом деле это лучшее, что можно сделать для долговечности колбы.

На DC у вас нет этого; каждый раз, когда вы включаете его, оно будет 220 В. Не так плохо, как 310 В, но вы также не можете использовать переключение через ноль.

о RMS
Почему мы используем среднеквадратичное значение, а не просто среднее значение? Среднее значение синуса равно нулю, так что это совсем не помогает. Если мы хотим знать, сколько энергии генерирует напряжение в нагрузке, мы должны использовать уравнение мощности

п = V × я = V 2 р п знак равно В × я знак равно В 2 р

Это вторая форма, которая нас интересует. Мощность пропорциональна квадрату напряжения, это то, из чего получается «S» в RMS, мы возводим в квадрат напряжение.

введите описание изображения здесь

Синий синус — это наше переменное напряжение, пик 1 В. Фиолетовая кривая — это напряжение в квадрате, а желтоватое — это среднее значение, или среднее значение: «М» в среднеквадратическом значении. Это точно 0,5 В 2 2 , Он по-прежнему имеет размер напряжения в квадрате, поэтому, чтобы получить величину напряжения, мы берем квадратный корень из этого, это 2 √ 2 2 2 V. «R» в RMS. Таким образом, среднеквадратичное отклонение в полном смысле расшифровывается как «квадратный корень из среднего квадрата напряжения».

Это показывает, что амплитуда (1 В) 2 — √ 2 выше значения RMS. Вот откуда берется 310 В: 220 В × 2 — √ × 2 = 310 В.

Разновидности

Существующие виды указателей напряжения, и как они разделяются.

По напряжению:

  • До 1 кВ.
  • Свыше 1 кВ.
Указатели напряжения до 1 кВ делятся по числу полюсов:
  • Однополюсные.
  • Двухполюсные.
Универсальные указатели делятся по виду измеряемого тока:
  • Для переменного тока.
  • Для постоянного тока.
По виду индикатора:
  • Светодиодные.
  • Цифровые.

Также, существуют бесконтактные указатели.

Устройство и принцип действия

Конструктивные особенности всех перечисленных видов указателей, и их принцип работы.

Однополюсный указатель напряжения

Такие указатели имеют один полюс. Для определения наличия напряжения достаточно прикоснуться этим полюсом к токоведущему элементу. Соединение с заземлением создается по телу человека, когда он пальцем руки касается контакта на указателе. При этом возникает очень малый ток, не более 0,3 миллиампера, лампа начинает светиться.

Ukazatel napriazheniia odnopoliusnyi

Чаще всего однополюсный указатель изготавливается в виде отвертки или авторучки из диэлектрического прозрачного материала, или со смотровым окошком. В корпусе расположен резистор и неоновая лампочка. Внизу корпуса находится пружина и щуп, а вверху контактная площадка для касания пальцем.

Указатель с одним полюсом используется только для проверки переменного тока, так как при постоянном токе неоновая лампа не будет гореть, даже если есть напряжение. Его целесообразно использовать для контроля фазных проводников, фазы в выключателе, розетке или патроне и в других аналогичных местах.

Допускается использование указателя до 1000 вольт без резиновых перчаток и других средств защиты. Согласно правилам безопасности, нельзя использовать в качестве указателя напряжения контрольную лампу («контрольку»), установленную в патрон, с подключенными двумя небольшими кусками провода. При случайной подаче большого напряжения на эту лампу, или при ее механическом повреждении, колба лампы может лопнуть и нанести травму электромонтеру.

Из недостатков однополюсных указателей можно отметить их малую чувствительность. Они показывают наличие напряжения только от 90 В.

Двухполюсный указатель напряжения

Состоит из 2-х отдельных частей, выполненных из диэлектрического материала и медного гибкого изолированного проводника, соединяющего эти части.

Ukazatel napriazheniia dvukhpoliusnyi

На этом рисунке показано устройство двухполюсного указателя. Неоновая лампа зашунтирована сопротивлением. Это снижает чувствительность указателя к воздействию наведенного напряжения.

Чтобы определить отсутствие или наличие напряжения с помощью двухполюсного указателя, необходимо прикосновение к двум элементам устройства, между которыми может быть напряжение. Если напряжение присутствует, то неоновая лампа будет светиться при протекании через нее тока, который зависит от разности потенциалов между элементами устройства, к которым выполнено прикосновение указателем.

Читайте так же:
Какие выключатели подойдут для светодиодных ламп

Ток, протекающий через лампу, имеет очень малую величину (несколько миллиампер). Это достаточно, чтобы лампа выдавала устойчивый сигнал света. Чтобы ограничить увеличивающийся ток в лампе, последовательно к ней подключен резистор.

Ukazatel napriazheniia svetodiodnyi indikator

В этом указателе применяется специальная светодиодная шкала на корпусе, имеющая градуировку на конкретные значения напряжения: 12 … 750 В.

Указатели напряжения свыше 1 кВ

Работают за счет эффекта свечения неоновой лампы во время прохождения по ней зарядного тока конденсатора (емкостного тока). Конденсатор подключается по последовательной схеме с неоновой лампой. Такой указатель напряжения еще называют высоковольтным. Он годится только для контроля переменного напряжения, им касаются только к фазе. Никаких контактных площадок для пальцев на них нет.

Различные варианты указателей имеют свои особенности конструкции, но все они состоят из основных общих для любых указателей элементов:

Ukazateli svyshe 1kV

Согласно правилам безопасности, при работе с таким указателем необходимо использовать резиновые перчатки. Всегда перед использованием указателя необходимо произвести его внешний осмотр на предмет отсутствия повреждений, а также проверить его работоспособность и подачу сигнала.

Такой контроль выполняется путем подноса щупа к токоведущим элементам устройства, которые точно находятся под напряжением. Также проверку работоспособности иногда проводят с использованием источников повышенного напряжения, либо мегомметром. Высоковольтный указатель в условиях гаража можно проверить следующим образом: приблизить указатель к работающему двигателю мотоцикла или автомобиля, а именно, к одной из свеч зажигания.

Согласно правилам безопасности указатель напряжения запрещается заземлять, так как провод заземления может случайно прикоснуться к частям, находящимся под напряжением, вследствие чего произойдет поражение электромонтера электрическим током. Высоковольтный указатель напряжения и без подключения заземления образует четкий сигнал работы.

Заземление указателя напряжения допускается заземлять только в случае, когда емкость указателя относительно земли очень незначительная, и ее не достаточно для контроля наличия напряжения. Это бывает при работах с воздушными линиями, находясь на деревянных опорах.

Универсальные указатели

Используются для контроля нуля и фазы, а также проверки напряжения и его значения в интервале 12-750 вольт для переменного тока, и до 0,5 кВ для постоянного тока.

Такие указатели применяют также для прозвонки соединений различных электрических цепей.

Ukazateli universalnye

В этих устройствах в качестве индикаторов применяют светодиоды, а вместо источника напряжения – конденсатор повышенной емкости.

Указатель напряжения может оснащаться цифровым ЖК дисплеем с выводом напряжения в вольтах. При наибольшем значении напряжения 220 В на дисплее отображаются все значения от наименьшего до наибольшего. Этот прибор отображает ориентировочное значение, и имеет низкую точность показаний. Преимуществом такого устройства является отсутствие источника питания.

Бесконтактный указатель напряжения служит для выявления проводов, находящихся под действием напряжения. Они могут быть скрыты в стеновых панелях или стенах. Устройство такого прибора реагирует на электромагнитное переменное поле. Имеется звуковая и световая индикация.

Ukazateli beskontaktnye

Правила применения

Перед применением указателя нужно убедиться в его работоспособности и правильных показаниях. Чтобы это проверить, необходимо произвести контроль напряжения в сети, которая точно находится под напряжением, и убедиться в том, что прибор работает. Только после этого допускается его применение в работе.

Запрещается применять лампу накаливания вместо индикатора в указателе напряжения. Эта лампа является травмоопасной и ненадежной.

Чтобы найти фазу на токоведущих элементах или проводах с помощью однополюсного указателя, необходимо взять указатель в правую руку за диэлектрическую рукоятку, прикоснуться щупом к проверяемому проводнику или токоведущему элементу. При этом левую руку нужно отвести за спину, чтобы ей случайно не прикоснуться к токоведущим элементам или заземлению. Пальцем правой руки коснуться металлического контакта однополюсного указателя. Прикасаться удобнее большим пальцем.

Если неоновая лампочка при этом светится, это значит, что проверяемый вами токоведущий элемент находится под напряжением фазы. Если лампа не горит, значит это ноль, либо напряжение отсутствует вовсе.

В случае с двухполюсным указателем, щуп того корпуса указателя, где есть индикатор, устанавливают на проверяемый элемент. Вторым щупом касаются другой фазы или ноля. По свечению лампы также определяют отсутствие или наличие питания. Пользование таким прибором не составляет никакой трудности.

При проверке напряжения необходимо работать аккуратно и осторожно, соблюдая правила безопасности, так как это очень опасно для жизни человека.

Причина 3 – слабое напряжение в сети

Цифра в 220 вольт только номинальная. Чаще всего в частных домах по факту напряжение в бытовых электросетях может быть выше или ниже этого значения (второе случается гораздо чаще). Причин много – падение напряжения на всей линии электропередач, недостаточная мощность трансформатора, перекос фаз… Благо пользователи электросетей могут легко решить проблему помех электросети конкретно в своем жилище, установив дома стабилизатор. Этот прибор никогда не будет лишним. Он не только выравнивает напряжение, избавляя от мигания лампочек, но и защищает электроприборы при резких скачках напряжения.

Для загородных домов мы советуем покупать светодиодные источники освещения с широким диапазоном (120–250 V), которые стабильно работают при скачках напряжения в электросети.

Включенная лампочка

Выбирайте лампы с широким диапазоном напряжения

Установка светодиодных ламп 12v в люстре вместо галогеновых

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна

Сейчас на рынке продаётся большое количество люстр с галогеновыми лампами 12v и всё бы хорошо, но некоторые хотят сэкономить на электроэнергии или предпочитают нейтральный белый свет жёлтому. Казалось бы, всё просто, нужно купить светодиодные лампы с таким же цоколем, как у галогенных ламп, установить их и люстра будет прекрасно работать. Но здесь кроется одна проблема, которая всплывает после установки светодиодных ламп. Давайте разберёмся, как обойти проблемы при замене ламп.

Почему установить светодиодные лампы непросто?

Сразу хочу написать, что всё, что описано в этой статье имеет отношение лишь к люстрам, в которых используются галогеновые лампы с рабочим напряжением 12в.

Дело в том, что в люстрах с лампочками на 12 вольт, используются трансформаторы (или блоки питания, называйте как хотите), которые преобразуют переменный ток 220 вольт нашей электрической сети в переменный ток 12 вольт, который нужен для галогеновых лампочек. При этом напряжения на выходе не стабилизировано. А для светодиодных ламп нужно стабилизированное постоянное напряжение. Уже этот факт у многих вызывает проблемы. Например, возможны мерцания светодиодных ламп заметных человеческому глазу, что случилось и в моём случае. Поверьте, это неприятно.

Вторая проблема, с которой вы можете столкнуться, может возникнуть из-за низкого энергопотребления светодиодных ламп. Дело в том, что некоторые трансформаторы автоматически отключаются, если потребляемая нагрузка слишком мала, а это как раз наш случай. Например, мощность одной галогеновой лампы, больше чем мощность десяти светодиодных ламп (мощность галогеновой лампы – 20 ватт, а светодиодной – 1,5 ватт). В моём случае такого не произошло, но не пугайтесь, если после замены ламп, люстра будет гаснуть или мигать.

И третья проблема, с которой столкнулся я, очень странная, но будьте готовы к такому повороту событий. Дело в том, что у меня люстра с пультом управления, и когда я поменял все лампы на светодиодные, то пульт управления мог только включить лампы, а погасить или поменять режим — нет. В общем можно сказать, что пульт работать перестал. Как только я вернул несколько галогеновых ламп (только часть) на место, пульт заработал (на картинке видно, что галогеновые лампы дают жёлтый свет). Я думаю, это происходит опять из-за недостаточной нагрузки.

Галогеновые лампы вместе со светодиодными в люстре

Замена трансформаторов

Случай со смешанным типом ламп мне не подходит, поэтому я решил, заменить трансформаторы галогеновых ламп на блоки питания для светодиодных ламп. Я открыл люстру и обнаружил внутри 3 трансформатора для галогенных ламп (один трансформатор 160 ватт на одну группу ламп и два других на вторую группу ламп), 1 блок управления и 1 блок для управления за светодиодной подсветкой (люстра может мигать красным и синим светом).

Внутренности люстры: трансформаторы галогеновых ламп

Теперь нужно подсчитать суммарную нагрузку на блок питания. У меня в люстре есть две группы ламп 8 и 9, при мощности светодиодной лампы 1,5 ватт, получается, соответственно, 12 и 13,5 ватт. Также помните, что после установки блока питания ни в коем случае нельзя вставлять в люстру галогеновые лампы!

Я приобрёл в магазине пару источников постоянного напряжения 12 в Navigator выдерживающих нагрузку до 15 ватт и подходящих мне по габаритам (поместятся внутрь люстры), см. картинку. Кроме основной функции такой блок питания защищает от короткого замыкания, скачков напряжения и перегрузки.

Читайте так же:
Лампы автомобильные для выключателей

Источник постоянного напряжения 12 вольт Navigator

Затем я выпаял провода из трансформаторов (см. первое фото снизу), поскольку раскручивать скрутки мне не хотелось, и подключил их к блокам питания Navigator, через клеммные колодки (см. второе фото снизу). Если выпаять провода вы не можете, по какой либо причине, то можно просто перекусить провода.

Разобранный трансформатор для галогеновых ламп

Блок питания для светодиодных ламп Navigator

После того как я заменил трансформаторы галогеновых ламп на блоки питания для LED ламп, я избавился от двух проблем: светодиоды перестали мерцать и люстра стала исправно работать с пульта управления. В итоге внутренности моей люстры стали выглядеть так.

Внутренности люстры с блоками питания для светодиодных ламп

И всё это естественно уместилось внутри люстры.

Внутренности люстры после переделки для работы со светодиодами LED

Внешний вид люстры со светодиодными лампами

В моей люстре используются цоколи G4 и я нашёл светодиодные лампы почти схожего размера с галогенными. Это лампочки LUNA LED G4 1.5W 4000K 12V в силиконовом корпусе.

Светодиодная лампа LED с цоколем G4 и силиконовым корпусом

По размеру эта светодиодная лампочка немного больше, чем галогеновая. И кому то может не понравиться, как выглядят плафоны в выключенном состоянии, но мне показалось нормально. Ниже на фотографиях вы можете увидеть, как выглядит плафон с галогеновой лампой и светодиодной.

Плафон с галогеновой лампой с цоколем G4

Плафон со светодиодной лампой с цоколем G4

А когда люстра включена, вы по любому не увидите, светодиоды горят или галогенные лампы.

Люстра после установки светодиодных ламп вместо галогеновых ламп

Стоит ли менять галогеновые лампы на светодиодные лампы?

Итак, подведём итог все проделанной работе. Итого на модернизацию люстры я потратил 2053,50 руб. (17 LED ламп по 80 руб. + доставка 100 руб. + источники постоянного тока 593,50 руб.) и пару часов работы. И теперь моя люстра стала энергосберегающей и светит нейтральным белым светом, как я и хотел. Для меня решающим фактором стал цвет, а другим может понравиться экономичность (25,5 Вт в сумме для светодиодов против 340 Вт для галогенок) и время жизни светодиодов (30000 часов для светодиодов против 4000 часов для галогенных ламп). Но учтите, что галогеновая лампа 20 ватт светит примерно в два раза ярче, чем светодиодная лампа 1,5 ватт (300-440 люмен для галогеновых ламп 20 ватт против 150-230 люмен для светодиодных ламп 1,5 ватт). Если яркости не хватает, можно использовать более мощные лампы, например, 2,5 ватт, но физический размер таких ламп будет больше. Это нужно учитывать, т.к. лампа должна поместиться внутрь плафона.

Стабилизация напряжения и Стабилитроны.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей. Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя. Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.

 Схема параметрического стабилизатора.

Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Трещины, пожар и слепота: что будет, если поставить в фары не те лампы?

Лампочка в автомобиле – совсем не та штуковина, которая должна становиться крупной проблемой. Светит, пока не перегорит, потом вместо неё ставят новую. Казалось бы, ничего сложного нет. Но наши автолюбители и здесь могут создать себе кучу проблем, зачастую полагая, что они умнее инженеров автомобильной отрасли. Воткнуть вместо 55-ваттной лампочки «сотку»? Да легко! Только надо «вколхозить» подходящее реле. Или хотя бы поставить провода сечением в «четыре квадрата». К сожалению, попытки сделать свет более ярким могут привести к тому, что дорогу будет освещать не фара, а костёр горящего автомобиля. Кроме такого вот целенаправленного уничтожения фар или всего автомобиля бывают ещё случайные ошибки. Вот обо всём этом мы и поговорим.

Условно разделим наш материал на два раздела. В первой части будем осуждать, бичевать и предавать анафеме попытки модернизировать штатные фары, а во второй разберём несколько забавных неполадок, вызванных лампочками автомобиля.

Зачем и для чего

Понятно, что все кулибинские идеи вызваны желанием сделать свет галогеновых фар более ярким. Для этого можно либо что-то изменить в штатном свете, либо поставить нештатный. Начнём с первого.

Мировой разум автосообщества родил две основные концепции модернизации штатного света. Первый сводится к установке более мощных лампочек, второй – к задиранию напряжения в фарах. В обоих случаях часто что-то идёт не так. Да, эти способы могут заставить светить фары лучше, но вместе с тем они имеют кучу побочных эффектов, по сравнению с которыми употребление морфина в обезболивающих целях покажется прикладываем подорожника к синяку.

Итак, можно ли вместо 55-ваттных лампочек поставить 60-ваттные? Можно. Только толку от этого не будет: чтобы свет стал заметно лучше, нужны не «шестидесятки», а хотя бы 90-100 Вт. Светить будет действительно ярче, но очень недолго. Вспомним школьный курс физики.

Есть такой закон, который называется законом Джоуля–Ленца (Джоуль и Ленц – это два разных дяденьки). Формулировка закона гласит, что мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля. Можно переформулировать: количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка. В виде формулы в этом случае закон выглядит так:

где Q – количество теплоты, I – сила тока, а Rt – сопротивление участка.

Очевидно, что чем выше сопротивление, тем больше будет выделяться тепла. А это значит, что проводка будет греться. Причём сильно. Кроме того, больше тепла выделяет и сама лампа. А это приводит ко множеству нежелательных последствий. Во-первых, выгорает отражатель, а пластиковый очень даже неплохо плавится.

А во-вторых, у многих машин (особенно старых) силовой ток проходит через переключатель света. Там нет реле, которые бы управлялись рычажком на руле или крутилкой на панели, и весь ток идёт напрямую через этот переключатель. Любой переключатель подразумевает наличие контактной группы, в которой есть участки повышенного сопротивления (особенно, если контакты окисленные). Согласно формуле Q=I2Rt, тепла при равном токе будет больше на участках цепи с повышенным сопротивлением. Поэтому контакты начинают гореть в буквальном смысле слова. В лучшем случае они просто плавятся. И переключатель света отправляется в помойку, потому что ремонтировать в сгоревшей «стрекозе» («гитаре» или как там их ещё называют) часто просто нечего.

По этой же причине страдают разъёмы в проводке. Они обычно пластиковые и тоже замечательно плавятся. А когда они плавятся активно, можно дотянуть и до короткого замыкания. Хорошо, если предохранители стоят не китайские – они проводку спасут. Ну а теоретически последствия могут быть очень тяжёлыми.

Чтобы избежать выхода из строя переключателя света, часто ставят разгрузочные реле. В этом случае переключатель только управляет работой реле, а силовой ток через него не проходит. Способ хороший, и он действительно помогает. Но спасает он только сам переключатель, а никак не фары и их разъёмы. Там, само собой, ток остаётся прежним, а значит, привет расплавленным отражателям, цоколям и проводам.

Ну и последнее: мощная лампа очень сильно греет рассеиватель фары. Понятно, что пластиковый тоже может поплавиться, а вот со стеклянным история другая. Он рассчитан на определённую температуру, но расплавить лампочкой его невозможно. Стекло гибнет по собственному сценарию: если его перегреть, а потом брызнуть водой из лужи, тогда оно трескается.

Получается, что установка более мощной лампы принесёт больше хлопот, чем света. Может быть, второй путь – с увеличением напряжения – даст более интересный результат?

Теоретически – да. Даже небольшое увеличение напряжения на 5% заставляет лампочку светиться чуть ли не на 20% ярче. Это, вроде бы, прекрасно, но бесплатный сыр тут урвать тоже не выйдет: такая прибавка светового потока сокращает жизнь лампы почти в два раза. Стоит оно того? Наверное, нет.

Читайте так же:
Включение двух лампочки двумя выключателями

Кроме того, есть и другой вопрос: а как вообще повысить напряжение в автомобиле? Теоретически, для этого достаточно одного диода, впаянного в цепь регулятора напряжения. Есть и другие способы, но все они повысят напряжение во всей бортовой сети. Можно напрячься и повысить напряжение только на участки цепи головного света. Но это уже та степень упоротости, которую рассматривать нет смысла.

Думаю, мы привели достаточно аргументов в пользу того, что ни более мощные лампы, ни изменение напряжения на них нормального результата не дадут. Тут нужен другой подход: ставить лампы другого типа. Например, светодиодные.

Не только штрафы

Ещё один путь, которым идут некоторые товарищи, это установка светодиодных ламп вместо галогенных. Есть ли в этом смысл? Да, иногда есть, но на секунду отвлечёмся от технических вопросов и посмотрим, что об этом думают в ГИБДД.

А думают там об этом плохо. Если в обычную галогеновую фару поставить светодиодную лампу, то получится классическое нарушение пункта 3.1 перечня неисправностей и условий, при которых запрещается эксплуатация транспортных средств – количество, тип, цвет, расположение и режим работы внешних световых приборов не соответствуют требованиям конструкции транспортного средства. Раньше за это просто лишали права управления, но с 2020 года ситуация изменилась. Сейчас действует постановление Пленума Верховного Суда РФ №20. Текст там длинный и нудный, но всё сводится к тому, что если цвет светодиодных лампочек не отличается от цвета заводских галогеновых, то можно отделаться штрафом в 500 рублей. Кроме того, есть способы узаконить переделку. Правда, не всегда. Но на уроки правоведения отвлекаться не будем – все эти юридические кульбиты вторичны. Вернёмся к технике.

Итак, светодиодные лампы способны светить лучше галогеновых, и это факт. Поэтому иногда их установка смысл имеет. Но и тут часто делают ошибки, которые весь полезный эффект сводят на нет. В первую очередь – из-за неправильного выбора лампочки.

Если взять в руки обычную галогенную лампу с цоколем Н4, то в ней можно увидеть две нити – ближнего и дальнего света. Эти нити расположены не рядом, а на разном расстоянии от цоколя. И отражатель фары так устроен, что фокусирует свет от обеих спиралей по-разному, соответственно расположению спиралей в колбе лампы. А вот в самых дешёвых светодиодных лампах светодиоды располагаются «спиной к спине» на одном расстоянии от цоколя (так себестоимость лампы получается ниже). Фара с такой лампой скорее лопнет от натуги, чем сфокусирует потоки ближнего и дальнего света правильным образом. Поэтому весь эффект от светодиодов накроется размытым пучком, направленным в космос, кусты, глаза встречных водителей. Словом, направленным куда угодно, кроме дороги.

Хотя надо заметить, что у хороших светодиодных ламп размещение светодиодов соответствуют размещению нитей накала галогенных ламп. И такие лампы светят действительно хорошо. Главное, не забывать про то, о чём я говорил чуть выше: сотрудники ГИБДД такой свет не любят. Хотя чисто теоретически разбирать фару и смотреть, какая стоит лампа, они права не имеют. И всё же.

Мелкие неприятности и большие вопросы

Теперь перейдём ко второй части вопроса: что можно сделать с лампочками неправильно непреднамеренно? Не в процессе «улучшайзинга», а не нечаянно?

Конечно же, часто ошибаются с цветом ламп. Причём ошибка странная – осознанная. Мол, белые лампы с температурой цвета более 4000-4200 К красивые и яркие, а значит, дорогу видно лучше. Но это не так: белый свет очень сильно рассеивается в капельках воды, поэтому в туман с такими лампами ничего не видно. А ещё очень плохо видно в снегопад и просто мокрую дорогу. Так что красиво – не всегда правильно. Думаю, этот факт известен всем, поэтому поехали дальше.

Как ни странно, но многие жалуются на то, что после замены лампочки в фаре сбилась настройка, корректор не помогает, а фары вообще не светят. Гипотетически новая лампа может сбить настройку светового пучка, но для этого надо умудриться поставить очень плохую лампу вместо плохой. У других ламп различий в позиции нитей не бывает, поэтому если вместо одной хорошей лампы поставить другую, настройка фар не сбивается. А свет всё-таки становится хуже. Почему?

По простой причине, которая даже может показаться смешной: иногда лампочки умудряются поставить вверх ногами. В фарах некоторых автомобилей это возможно, причём перевёрнутая лампочка встаёт так хорошо, что никаких подозрений не возникает: вошла и защёлкнулась как положено.

Перевёрнутая лампочка на ближнем свете работает очень плохо: над нитью ближнего света стоит экранчик, который обрезает верхнюю часть светового пучка и направляет свет на дорогу. Если лампу перевернуть, ближний свет начинает светить в небо и во встречные машины, но никак не на дорогу. Смешно, но бывает. Например, на Citroen C4 первого поколения, у которого достать лампу с непривычки сложно, а воткнуть её вверх ногами легко.

В целом, других ошибок при установке ламп не бывает. Если не лапать галогеновую лампу голыми руками и работать аккуратно, то всё будет хорошо. Но лампы бывают не только в фарах.

Забавная неполадка возникает с двухнитевыми лампами габаритного света и стоп-сигналов. Они используются не на всех машинах (у многих стоят две отдельные лампы), но у тех, кого они есть (от ВАЗ 2115 до Фордов), может возникнуть ситуация, когда очень хочется поехать в сервис к профессиональному электрику. Выглядит всё это следующим образом: при нажатии на педаль тормоза сами по себе включаются габариты и подсветка в салоне (загорается приборная панель и всё остальное, что должно светиться при включенных габаритах). Многие сразу начинают искать «коротыш» в проводке, но на самом деле всё проще: перегоревшая нить стоп-сигнала успешно замыкает нить габаритов, и при нажатии на тормоз напряжение подаётся в цепь габаритов. В этом случае достаточно просто заменить двухнитевую лампу. Хотя в ряде случаев в этих чудесах действительно виновата либо проводка, либо замкнувший подгорелый патрон.

С лампами стоп-сигнала связана ещё одна паническая атака, которой иногда подвержены, например, владельцы некоторых Ниссанов (Note, Almera Classic, X-Trail). Машина внезапно перестаёт набирать скорость, отказывается работать кик-даун. Дело опять-таки в «стопарях»: как только они перестают работать оба, ЭБУ включает аварийный режим, запрещающий резкий набор скорости. При этом, например, в руководстве по эксплуатации X-Trail Т30 об этом рассказано, а в мануале к Т31 зачем-то промолчали. Кстати, такая «фишка» есть не только у Ниссана, так что за стоп-сигналами нужно следить. Некоторые автомобили при негорящих «стопарях» не ограничивают открытие дроссельной заслонки, а, например, отключают ABS и выдают соответствующую ошибку. Или вообще не едут (обычно «японцы» для внутреннего рынка).

Ровно тот же набор ошибок можно получить при замене в стоп-сигналах обычных ламп на светодиоды. Они потребляют мало тока, и ЭБУ считает, что «стопари» просто не работают.

В целом нужно отметить, что вмешательство в оптику редко приносит хорошие результаты. Можно получить пожар, лишение прав, проклятия ослеплённых встречных водителей, а вот заметно положительные результаты – вряд ли. Тут уж или машину менять, или терпеть и следить за состоянием стокового света. А иногда достаточно просто отполировать рассеиватели фар.

Ну и напоследок стоит отметить, что тем, кто тонирует задние фонари, должно быть стыдно. И тут даже рассказывать бессмысленно, почему.

Мерцание света — важно или нет?

Мерцание света - невидимый источник проблем

Тема воздействия высокой частоты мигания света источников освещения на окружающий мир периодически становится предметом активного обсуждения специалистов. Статьи, поднимающие вопросы о мере влияния невидимого глазом мигания многих современных источников освещения, опубликованы во многих тематических журналах. В частности Rebekah Mullaney, своими публикациями надеется поощрить производителей светодиодных светильников и дистрибьюторов уделять больше внимания поиску решения, наиболее подходящего для благополучия людей.

Знаете ли вы, что большинство источников света в офисных зданиях не обеспечивают непрерывный свет? Высокие частоты мигания едва заметны для невооруженного глаза, но исследования показали, что определенные уровни воздействия мерцающего света могут быть опасными для здоровья человека.

Тем не менее, жестокая ценовая война, начавшаяся с 2012 года, заставляла малые, средние и даже крупные корпорации снижать стоимость изделий в ущерб качеству, оставляя открытым вопрос о том, какое внимание производители уделяют вопросам качества освещения.

Читайте так же:
Как зачистить провода для ламп

Откуда берётся мерцание света?

Все источники света, работающие на переменном токе (AC), создают мерцающий световой поток из-за флуктуаций тока и напряжения. Флуоресцентные лампы, натриевые лампы высокого давления (HPS), светодиодные источники света имеют общую природу мерцания. Для обеспечения наиболее комфортного и безопасного освещения, требуется питание постоянным током (DC). Частота электрической сети обычно составляет 50 или 60 Гц, частота мерцания люминесцентной лампы обычно выше в два раза частоты электроэнергии, 100 или 120 Гц. Мерцание с малой частотой, примерно от 3 до 70 герц, может привести к судорогам у чувствительных людей, в то время как умеренная частота мерцания, от примерно 100 Гц до примерно 500 герц, незаметна человеческому глазу и может воспринимается только через стробоскопический эффект, однако может привести к неблагоприятным последствиям для здоровья человека, таким как головная боль, напряжение глаз и усталость.

Стробоскопический эффект заключается в восприятии глазом объектов, освещаемых вспышками света, когда объекты в движении могут отображаться в виде серии неподвижных изображений.

Стробоскопический эффект можно наблюдать несколькими способами. Самый простой — посмотреть на источник света с помощью цифрового фотоаппарата, результат показывает характерный волновой эффект, как на изображении 1. Множественные тени движущегося объекта, как показано на рисунке 3, также являются характерным признаком стробоскопического эффекта. Стробоскопический эффект может привести к ложной интерпретации работы механизмов, например видимость замедленного или неподвижного состояния быстро движущихся элементов.

Стробоскопический эффект

Рисунок 1 взят с камеры телефона с видимым волновым эффектом стробоскопического источника света, в то время как рисунок 2 такого эффекта не имеет. Фотографии 3 и 4 показывают, что объект в движении, снятый под стробоскопическим источником света, создает перекрытие тени. В случае без стробоскопического эффекта, фото показывает непрерывное движение без присутствия перекрывающихся теней.

Измерение уровня мерцания

В настоящее время нет официальной стандартной процедуры для измерения мерцания, но Светотехническое общество (IES) разработало две методики для количественной оценки мерцания, которые описаны в рекомендациях по разработке осветительных приборов. Первая и наиболее часто используемая методика основана на вычислении процента мерцания. Процент мерцания указывает на среднее количество модуляции или снижения светоотдачи одного цикла включения-выключения. Источник со 100-процентным мерцанием означает, что в какой-то момент цикла он не производит никакого света, в то время как полностью устойчивый свет будет иметь нулевой процент мерцания.

Другая методика даёт индекс мерцания в интервале от нуля до единицы. Индекс мерцания учитывает процент мерцания и две других переменных: форму кривой изменения интенсивности источника света, или выходной кривой, и скважность мигания, которая указывает отношение времени, когда источник света включен к полному циклу включения-выключения. Чем ниже процент мерцания и индекс мерцания, тем меньше источник мигает или создает ощутимый стробоскопический эффект.

Измерение уровня мерцания

Мерцание различных источников света
ТехнологияПроцент мерцанияИндекс мерцания
Лампа накаливания6,30,02
Линейная лампа T12 с электромагнитным ПРА28,40,07
Спиральная компактная люминесцентная лампа (CFL)7,70,02
Офисный люминесцентный светильник с электромагнитным ПРА370,11
Офисный люминесцентный светильник с электронным ПРА1,80,00
Металл-галогенная лампа520,16
Натриевая лампа высокого давления950,3
Светодиодная лампа с стабилизатором тока2,80,0037
Светодиодная лампа без стабилизатора990,45

Несмотря на то, что традиционные лампы накаливания питаются переменным не стабилизированным током, уровень мерцания таких ламп невысок. Спираль лампы накаливания просто не успевает остыть до следующего импульса тока. Совершенно иначе ведут себя люминесцентные и газоразрядные лампы. Они выключаются практически мгновенно при отключении энергии. В 90-х годах прошлого века, решением этой проблемы стало использование электронных балластов (ЭПРА), которые подавали на лампу частоту более 20 кГц, что делало мерцание невидимым для глаза.

Почему мерцают светодиоды

Светодиоды могут давать мерцание света даже больше, чем лампы накаливания или люминесцентные лампы, поскольку являются прямыми преобразователями электрической энергии в свет. Это означает, что пока подается постоянный ток, светодиод будет гореть без мерцания. Как только ток прекратится, светодиод мгновенно погаснет. Если же ток изменится, то пропорционально изменится и световой поток.

В случае простой схемы питания светодиода, в которой нет стабилизации постоянного тока с помощью драйвера, яркость светодиода будет изменяться одновременно с циклом переменного тока. Выпрямленный переменный ток вызывает пульсации напряжения и тока на светодиоде. Эта пульсация, как правило, происходит на удвоенной частоте питающей сети — 100 или 120 Гц (США) и также в точном соответствии пульсирует световой поток.

Диммирование является другой основной причиной мерцания. Обычные диммеры, например тиристорные, модулируют напряжение за счет изменения времени выключения в цикле включения-выключения, снижая световой поток. Широтно-импульсная модуляция (ШИМ) меняет яркость свечения, включая и выключая светодиод на частотах, в идеале превышающих 200 герц.

Диаграммы мерцания

Воздействие мерцания света на человека

В документах Министерства энергетики США 2013, посвященных исследованиям влияния мерцания света на человека отмечается, что низкая частота мерцания может вызывать эпилепсию, люминесцентные лампы с электромагнитным ПРА, используемые в офисе, также могут вызывать головные боли, усталость, размытие и ухудшение зрения. Стробоскопический эффект иногда вызывает иллюзии при движении в ночное время, в результате чего движущиеся объекты могут показаться замедленными или стоящими на месте. Кроме того, такой эффект также потенциально опасен в промышленных условиях, может привести к проблемам безопасности в строительстве.

Есть определенные группы людей, более уязвимых для негативных последствий мерцания, в том числе дети, больные аутизмом, страдающие мигренью и больных эпилепсией. Поскольку мерцание недоступно для восприятия невооруженным глазом, люди обычно не осознают, что причина дискомфорта, возможно, заключается в мерцании. В этом случае, может быть снижена определенная степень усталости, и повышена общая эффективность работы при изменение качества света.

Методы снижения мерцания светодиодного освещения

Снизить мерцание света позволяет драйвер питания, который может устранить проблему, подавая на светодиод постоянный ток без пульсаций. Однако производители при выборе драйвера питания для своих продуктов учитывают множество факторов, таких как стоимость, размер, надежность и эффективность. Кроме того, область использования светильника также играет роль — мерцание может быть допустимым в определенных условиях освещения.

Производители всегда пытаются оптимизировать полезные качества устройств ровно настолько, сколько требует приложение. Это относится и к мерцанию. Конденсаторы существенной ёмкости могут помочь сгладить пульсации тока, но они тоже имеют недостатки, например они имеют существенный размер и чувствительны к перегреву. В пространстве, которое часто слишком мало, например, во многих светодиодных сменных лампах, большие конденсаторы неприемлемы. Простейшие выпрямители переменного тока с использованием конденсаторов большой ёмкости снижают коэффициент мощности устройства.

В случае светодиодных ламп с диммированием, производители могут модулировать ток с очень высокой частотой, превышающей несколько тысяч герц. Это похоже на электронные балласты для люминесцентных ламп. Однако, чем выше частота, тем ближе физически драйвер должен быть к светодиоду. Иногда потребители хотят располагать драйвер в стороне от системы освещения что не всегда возможно.

Необходимость изготовления устройства питания компактным, эффективным, надёжным, при этом не производящим электромагнитных помех в эфир и питающую сеть, имеющим высокий коэффициент мощности не делает его дешёвым. Однако, среди массы различных вариантов реализации, можно найти золотую середину — приемлемое качество при адекватной цене.

Различные организации, например Alliance for Solid-State Illumination Systems and Technologies (ASSIST), U.S. Environmental Protection Agency, National Electrical Manufacturers Association (NEMA) устанавливают лимиты на технические параметры устройств освещения, которые производители не должны превышать. Таким образом, создаётся база стандартов и рекомендаций, следуя которым, производители вынуждены производить качественные изделия.

Led Professional — Trends & Technologies for Future Lighting Solutions, Jan 15, 2015

ASSIST Recommends … Flicker Parameters for Reducing Stroboscopic Effects from Solid-State Lighting Systems, by the Alliance for Solid-State Illumination Systems and Technologies and the Lighting Research Center, May 2012

“Flicker happens. But does it have to?” by Cree, 2013.

“Exploring flicker in Solid State Lighting: What you might find, and how to deal with it,” by Michael Poplawski and Naomi Miller, Pacific Northwest National Laboratory, 2011.

Dimming LEDs with Phase-Cut Dimmers: The Specifier’s Process for Maximizing Success, ibid., October 2013.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector