Tpo-gefest.ru

ТПО Гефест
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Драйверы тока для мощных светодиодов

LED-драйверы

Блок питания для светодиодов может использоваться в широком диапазоне рабочих температур от -40оС до +50оС. А благодаря встроенному корректору коэффициента мощности устройство обеспечивает качественное потребление электроэнергии.

Многие производители оснащают устройства питания светодиодов регулятором выходного тока, благодаря которому можно световой поток светодиодов. В случае короткого замыкания сработает специальная защита, однако когда причина аварии будет устранена, устройство автоматически продолжит работать в нормальном режиме. .

Срок службы LED драйверов может достигать 15 лет, а гарантийный срок составляет 24 месяца. В нашей компании вы можете купить блоки питания для обычных и мощных светодиодов, а также любые драйверы для светодиодов по наиболее выгодной цене. Если при заказе их не окажется на складе, устройства будут изготовлены в течение месяца.

Зачем нужны драйверы для светодиодов и что это такое

Светодиод является полупроводником, преобразующим электроэнергию в свет, причем яркость излучения зависит от тока. Чтобы диод излучал заявленный поток света, нужно обеспечить соответствующее значение электротока. По принципу действия драйвер является блоком питания, ограничивающим и преобразующим ток из сети в соответствии с требуемыми для конкретного светодиода параметрами.

Основной показатель выходного тока – стабильность, обеспеченная микросхемой на основе транзисторов или ШИМ-преобразованием. Не менее важна способность поддерживать стабильность выходного потока во время работы. Качественный драйвер способен так же обеспечить диммирование и защитить источники света от избытка тепла и короткого замыкания.

Важно! Светодиоды с небольшой мощностью можно присоединить через резистор. Это самый простой и дешевый вариант благодаря небольшому количеству компонентов. Недостатком считается разброс значений элктротока, влекущий за собой колебания светового луча независимо от точности расчетов.

Собираем простой светодиодный драйвер самостоятельно на схеме LM 317

Простой светодиодный драйвер своими руками на схеме LM 317

Рассмотрим еще один очень простой (простейший) драйвер, который можно собрать даже без пайки, плат и т.п.

Максимальное входное напряжение для такого драйвера сне должно превышать 37 В. И должно быть на 3D выше падения напряжения самого светодиода.

Читайте так же:
Микросхема mp3398a уменьшить ток подсветки

Сопротивление R1 рассчитываем по формуле:

I — необходимая сила тока.

Ограничение по току — 1,5 А. И при таком токе резистор должен рассеивать 1.5 * 1.5 * 0.8 = 1.8 Вт тепла.

Микросхема LM317 однозначно будет «кипятком» и необходим в обязательном порядке радиатор.

Драйвер, как и в первом случае будет линейны и поэтому для максимального КПД необходима минимальная разница между VIN и VLED.

1.1 Драйверы мощных светодиодов

Как уже было сказано выше, светодиодный драйвер 350мА для светодиодов 1W стабилизирует выходной ток, а также автоматически выбирает необходимое напряжение в зависимости от количества подключенных светодиодов. Диапазон возможных напряжений определяется мощностью светодиодного драйвера. Драйвер для светодиодов 1W может стабилизировать ток на уровне 300мА или 330мА. Это также нормальный ток для питания светодиодов 1W. Обычно светодиодные драйверы с выходным током 300мА без корпусные, маломощные, не имеющие радиатора для охлаждения нагруженных компонентов. Устанавливаются в закрытые корпуса светодиодных маломощных светодиодных светильников. Светодиодные драйверы 330мА применяют из-за различных технических причин. Яркость подключенных светодиодов не значительно будет отличаться в сравнении с светодиодным драйвером 350мА.

Светодиодный драйвер 700мА работает по тому же принципу что и драйвер для светодиодов 1W. Так же драйвер для светодиодов 3W стабилизирует ток не только на уровне 700мА. Открытые маломощные драйверы для светодиодов 3W обычно выдают ток 600-650мА чего вполне достаточно для питания светодиода 3W. Ресурс работы светодиода в режиме не полной нагрузки увеличивается. А это очень хороший плюс.

Драйвер для светодиодной матрицы подбирается исходя из мощности светодиодной матрицы и ее внутренней схемы. Обычно в техническом описании матрицы указывают номинальные параметры питания, опираясь на которые можно подобрать драйвер светодиодной матрицы.

Следует отметить высокую надежность драйверов для мощных светодиодов. Использование продвинутых современных технологий в производстве светодиодных драйверов позволяет добиться очень точной стабилизации тока на заданном уровне при значительном колебании температуры окружающей среды и других климатических воздействиях. Современные источники стабилизированного тока (драйверы) свободно используются в экстремальных температурных условиях от -50 до +70С.

Читайте так же:
Как соединить сип кабель с медным проводом под напряжением

Безопасность светодиодного драйвера обеспечивается функциями защиты:

  • — защита от перегрева;
  • — защита от короткого замыкания;
  • — защита от перегрузки;

Драйверы в герметичном корпусе изготавливаю для применения в условиях повышенной влажности или высокого уровня загрязнения. Оба эти условия имеют место в тепличном хозяйстве. Незаменимый герметичный светодиодный драйвер в лампах для досвечивай растений. Все большую популярность приобретают светодиодные лампы в теплицах. Мощные светодиоды с длинной волны 660нм, 455нм и 445нм успешно зарекомендовали себя как самый эффективный свет поглощаемый растениями. Единственный недостаток – высокая стоимость качественных светодиодов.

Драйвер для светодиодов 350мА, 700мА, 900мА и другие купить можно в нашем интернет-магазине SpecLED.com.ua. Если у Вас возникли дополнительные вопросы, не стесняйтесь, мы всегда рады поделится накопленными знаниями с клиентами. Исключением является только воскресенье и государственные праздники J

Что такое драйвер?

Термин применяется к блокам питания, которые обеспечивают постоянный по значению ток в некотором диапазоне выходных напряжений.

Драйвер поддерживает в цепи постоянный по значению ток при изменении сопротивления подключённой нагрузки. Достигается это изменением выходного напряжения.

Для чего это нужно? Светодиоды нужно питать постоянным по типу и постоянным по значению током. Превышение номинального тока светодиода очень пагубно сказывается на его сроке эксплуатации — он быстро тускнеет, теряет яркость, перегревается и может перегореть.

Казалось бы, в чём проблема подсоединить светодиод к трансформатору постоянного тока? Подсоединяем же мы лампу накаливания — получаем и постоянный ток, и постоянное напряжение.

Можно, но не нужно! Дело в том, что сопротивление лампы накаливания практически не меняется, поэтому через неё и течёт постоянный по значению ток. Совсем другое дело светодиод — его сопротивление сильно «плавает» в зависимости от температуры. Поэтому, подключив его к трансформатору, мы получим на нём постоянное напряжение, но значение тока будет меняться и может превысить номинальный максимум. А от этого сильно страдает срок службы светодиодов.

Читайте так же:
Кабель канал для двух проводов

Для решения этой проблемы и предназначены драйверы. Они меняют напряжение, поддерживая одно и то же значение тока, а светодиоды в этой ситуации чувствуют себя очень комфортно.

Драйвер 50 ваттСветодиодный драйвер на 50 ватт

Применительно к светодиодным прожекторам термин драйвер идентичен термину блок питания — под ними всегда подразумевается одно и тоже.

Как я запускал мощный светодиодик. Драйвер 100Вт светодиода.

Решил проапгрейдить свою систему освещения. Для этого прикупил на DX светодиодик.

светодиодик

Данный светодиодик достаточно мощный и светит чистым белым цветом, без всякого постороннего желтоватого или синеватого оттенка.

Что было до этого

Юзал я для освещения вот такую сборку из 10 белых светодиодиков по 1 Вт.

сборка светодиодиков

В качестве драйвера — вот такой сундучок)

сундучок

Там небольшой трансик, платка управления на меге, линейный драйвер светодиодика (после ШИМа и RC-цепочки). В общем, всё довольно тупо. Из-за небольшой мощности, небольшого падения напряжения и большого радиатора, ничего не грелось. Кроме трансика)

старый драйвер

Впрочем, решено было данную систему проапгрейдить. 10 Вт — фии для светолюбивого человека вроде мя.)

Первый вариант схемы

В качестве драйвера мощного светодиодика я решил применить бустерный стабилизатор. Бустер хорошо умеет регулировать ток и может повысить напряжение до требуемых светодиодику 32 вольт.

В инете нарылся калькулятор бустера, в который я вбил приблизительные данные.

исходные данные

Вот, что получилось.

результат

Что же, выбираем детальки.

Для управления подойдёт тинька 26L — дешёвая, имеющая быстрый асинхронный таймер, тактируемый от 64 МГц, АЦП.

Из силовухи — мосфитик IRLU024N, с логическим управлением, непрерывный ток стока до 17 А. Дросселей решил сделать несколько разных, потом методом тыка выбрать наиболее удачный.

В качестве нагрузки, которую не жалко (да и не просто) убить — обычная лампочка на 36 вольт. Вот такая схемка получилась.

схемка драйвера

Недолго думая, собрал. Дроссель, который на фотке — от какого-то китайского компового блока питания, с выхода 3.3 В. Он, кстати, и остался в окончательной версии.

платка драйвера

Тиньку пока повесил просто на проводочках. Прошивка считывает положение переменного резистора и выставляет соответствующее заполнение ШИМа. Частота ШИМа — 125 кГц.

Читайте так же:
Кабельные наконечники один провод

тинька на проводочках

Что же, смотрим напряжение на лампочке и повышаем заполнение до тех пор, пока не получим нужные 36 вольт. Выходная мощность — 60 Вт. Лампочка ярко светит секунд 30, затем кондёры немножко надуваются, а силовой транзистор выпаивается из платки. Фейл. (

Второй вариант схемы

Оказывается, у мосфитов есть очень вредный параметр — заряд затвора (Qg). Например, для нашего IRLU024N он равен 15 нКул. То есть, затвор полностью заряжается за 15 нс током 1 А. А жалкие 20 мА с тинькиной ножки зарядят затвор куда медленней, где-то за 750 нс. Учитывая, что период ШИМа при частоте 125 кГц составляет 8000 нс, заряд-разряд отъедает почти 40% времени ton (при заполнении 50%), вот транзистор и греется как самовар.

Чтобы ускорить этот процесс, юзаются специальные драйверы затвора. Например, IR4428 (IR4426, IR4427). Такой драйвер может выдать импульс в несколько ампер, который быстро перезарядит затвор. А ещё у драйвера есть триггер Шмитта на входе, так что кривая форма входного сигнала ему не страшна.

От «логических» мосфитиков я решил отказаться. В конце концов, был выбран дубовый IRF3205.

вторая схемка

Входные и выходные конденсаторы зашунтированы мелкой керамикой, для фильтрации мощных импульсных токов.

Вот что получилось.

новый драйвер

Дорожки силового контура пропаял толстым проводом.

дорожки

Без этого дорожки будут жутко греться)

тестирование

Новая схемка заработала куда лучше. Выходная мощность 60 Вт, схемка чуть греется (без радиатора). КПД чуть меньше 90%. Поставил на транзистор и диод небольшой радиатор и подцепил вторую лампочку. Выходная мощность 120 Вт, схемка греется, но опасений за её жизнь не возникает)

запуск

Испытания

Собрал платку управления.

платка управления

Прошивка считывает рабочие ток и напряжение светодиодика и компенсирует разницу между текущим и заданным значением, изменяя заполнение ШИМа.

Требуемая мощность выбирается кнопочками и отображается светодиодной линейкой. DS1820 прицеплен к радиатору светодиодика. При нажатии двух кнопочек сразу, на светодиодной линейке отображается температура.

Читайте так же:
Конденсатор энергосберегающей выключатель с подсветкой

При превышении рабочего напряжения, тока или температуры, девайс уходит в защиту.

Второй канал ШИМа заюзан для регулировки оборотов вентилятора, обдувающего радиатор светодиодика. Вентилятор подключен к такому простенькому драйверу.

драйвер вентилятора

Запихал всё в ту же коробочку)

в коробочке

готово!

Кнопочками задаётся мощность — 3.2, 6.4, 12.8, 25.6, 51.2 или 102.4 Вт.

Сам светодиодик приделан к какому-то радиатору, купленному в ДНСе рублей за 50.

светодиодик на радиаторе

Что можно сказать о мощности?)

3.2 Вт. Полумрак. Мона юзать как фоновую подсветку при работе за компом.

12.8 Вт. Аналог моей предыдущей лампочки. Вполне мона работать.

51.2 Вт. Уже посветлее. Можно возиться с SMD мелочёвкой и не обязательно придвигать лампочку близко к себе. Удобно)

102.4 Вт. Визуально не очень сильно отличается от 51.2 Вт. Но самому девайсу явно приходится куда туже) Светодиодик пышет жаром, подводящие провода сильно греются. Руку под светодиодиком нельзя держать дольше нескольких секунд. В нескольких сантиметрах перед светодиодиком плавится целофановый пакетик.

Полная моща. Дело было ночью.

в работе

Спасиб Vga за помощь в разработке девайса!

upd: Выяснилось, что разнести контроллер и силовую часть на разные платки — далеко не лушчая идея. Лучше всё сделать на одной платке, и силовые линии сделать потолще.

Основные выводы

Светодиоды более требовательны к качеству электроэнергии, чем другие лампы. При превышении значения постоянного тока на 10-20 % в лучшем случае у них сокращается срок службы, в худшем они сгорают. Поэтому делать или выбирать driver нужно на основе точных расчетов.

Пайка резисторов, конденсаторов и готовых микросхем требует определенной сноровки. Проще сделать блок из простых элементов, не требующих создания микросхем с использованием паяльника. Микросхемы лучше покупать в виде готовой сборки, хотя конечная стоимость будет выше, но и качество тоже. Попробовать паять сложные микросхемы можно после того, как будет приобретен опыт в выполнении этой работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector