Tpo-gefest.ru

ТПО Гефест
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подобрать ламповый усилитель? Информация может быть не достоверна

Ламповый усилитель – это устройство, созданное для увеличения мощности переменных электрических сигналов при помощи электровакуумных или радиоламп.

Усилители делятся на две большие группы – они могут быть однотактными и двухтактными.

Однотактные – работают с помощью одного канала усиления: А1 (редко, но бывают модели, в которых действует канал А2). Схема устройства подобных усилителей очень проста, поскольку в них используется только два усиливающих компонента, то есть 2 каскада. Эти усилители способны выдавать очень чистый и прозрачный звук.

А вот двухтактные усилители работают в следующих классах усиления – это А1, А2, АВ1, АВ2, В1 и В2. Если вы ещё только начинаете свое знакомство с ламповым оборудованием, то лучше выбирайте модель, где будет возможно применить выходной каскад в режимах А1 и АВ1. Но, несмотря на это весомое и отличительное преимущество двухтактные ламповых усилителей, у них есть и небольшой минус – схема их конструкции гораздо сложнее, поэтому самостоятельно его изготовить будет достаточно не просто. И, как правило, количество ваших усилий и финансовых вложений, необходимых для его создания, неоправданно велики. Так что, будет гораздо мудрее и проще обратиться в узкопрофильные магазины.

Содержание / Contents

Многообразие ламп действительно огромное, каждый тип ламп со своей символикой, грейдами и индексами, и, не смотря на то, что определённые индексы предполагают строго определённую функцию лампы, каждый производитель понимает это по-своему.

Для начала давайте разберёмся с обозначением ламп и с тем, как и что называется.

Название радиоламп состоит из нескольких частей. В зависимости от страны производства, количество и смысловая нагрузка этих частей разная. Не вникая в подробности, будем делить их на 3 части: американская, советская и европейская. Да, у советского союза метод маркировки совпадает частично с американцами, частично с Европой. Связано это с тщательным копированием иностранной потребительской техники, дабы не затрачивать силу на разработку своей. Свои же силы тратились на военную технику.

Читайте так же:
Включение двух лампочки двумя выключателями

Рассмотрим советскую маркировку:

Маркировка делится на 5 частей.
1 часть — число, указывает напряжение накала. В данном случае- 6.3 вольта (число 6).
2 часть — буква, указывает тип лампы, в данном случае двойной триод (буква Н).
3 часть — число, указывает модель конкретного типа лампы (число 2).
4 часть — буква или её отсутствие, указывает на вариант исполнения, в данном случае — стеклянный баллон пальчикового типа (буква П).
5 часть — грэйд, указывает на различные изменения в лучшую сторону от оригинальной модели, в данном случае — повышенная долговечность (буква Е) и повышенная механическая прочность (буква В)

Теперь рассмотрим европейскую маркировку:

Маркировка здесь из 3 частей.
1 часть — буква, указывает напряжение или ток накала, в данном случае напряжение 6.3 вольта (буква E).
2 часть — буква или несколько букв, указывает на тип лампы, в данном случае сдвоенный триод (две буквы C).
3 часть — число, обозначает модель данного типа (число 83). Кстати, именно последняя часть может таить в себе сюрприз, так именно 83 модель (и некоторые другие) могут работать и с напряжением накала в 12.6 Вольт , и с напряжением в 6.3 вольта, в зависимости от схемы включения. Весьма деликатный вопрос.

И наконец, рассмотрим американскую маркировку:

Маркировка из 4 частей, отдельные маркировки весьма непонятные по причине нестабильности 4 части, но об этом по порядку.
1 часть — число, указывает на напряжение накала, в данном случае- 12.6 Вольт (число 12).
2 часть — буквы, указывают на тип лампы, в данном случае — вариант двойного триода с высоким усилением (буквы AX).
3 часть — число, обозначает модель данного типа лампы (число 7).
4 часть — чертовщина, это и грэйд, и производитель. Понимается 4 часть интуитивно.

Начнём с ламп предварительных каскадов.

Что дают радиолампы?

Если отвечать на вопрос прямо, то ничего хорошего. Радиолампы спроектированы для работы на относительно высоких напряжениях, обладают большим внутренним сопротивлением и довольно низким коэффициентом усиления. Гм, откуда же взялся этот ренессанс, почему современная теория усилителей так тяготеет к этому очевидному выкидышу прошлого, радиолампам? Для начала, попробуем разобраться, чем отличаются радиолампы и транзисторы. Микросхемы состоят из тех же транзисторов, поэтому сравнение радиоламп с ними довольно беспредметно.

Читайте так же:
Накал радиолампы постоянным током

К сожалению, у меня отсутствуют PSPICE модели советских радиоламп. Точнее, действует принцип «Неуловимого Джо», они не нужны. Но если захотите использовать, можно воспользоваться библиотеками, любезно представленными сайтом next-tube. Однако надо бы как-нибудь прокомментировать рассуждения. По свойствам, ближайшим аналогом радиоламп в триодном исполнении являются полевые транзисторы со встроенным каналом, JFET. Давайте возьмем BF245A, благо он есть в библиотеке PSPICE.

Вначале посмотрим зависимость тока стока от напряжения на затворе. Схема включения обычная:

310x175 4 KB

На затвор подается управляющее напряжение от +0.5 до -1.5 вольта. Устанавливать большее положительное напряжение нельзя, откроется встроенный паразитный диод (который, естественно, отсутствует в радиолампах). Устанавливать же меньше -1.5 вольта смысла нет, транзистор закрывается полностью.

427x337 5 KB

Если сильно утрировать, то можно сказать, что изменение управляющего напряжения приводит к линейному изменению тока стока. Давайте попробуем собрать усилительный каскад.

321x215 5 KB

При этом на стоке будет следующая картинка:

реклама

425x335 5 KB

Во-первых, у выходного напряжения размах 3.2 вольта, что говорит о коэффициенте усиления 32 (управляющее напряжение 0.1 вольта). Во-вторых, особо сильных искажений не заметно, скорее их просто не видно. Посмотрим спектр:

423x336 4 KB

Отчетливо видна вторая гармоника, что говорит об асимметрии, и присутствие небольшой третьей гармоники.

Сравним с транзистором. Для примера возьмем нечто обычное, например 2N3904 (npn, 60 вольт, hFE=80). Анализировать зависимость тока коллектора от напряжения на базе как-то глупо, налицо будет явный релейный эффект. Впрочем:

427x336 5 KB

Обратите внимание, шкала тока логарифмическая!

Теперь подадим синусоидальный сигнал на вход и посмотрим, что станет на выходе. У транзистора большее усиление, чем было в схеме на JFET, поэтому я несколько уменьшу величину управляющего напряжения для сохранения прежнего выходного сигнала.

407x362 14 KB

На схеме отражены три варианта подачи сигнала:

  • Зеленый – источник напряжения с очень низким внутренним сопротивлением.
  • Синий – через резистор с сопротивлением, равным входному сопротивлению транзистора (при этом токе эмиттера).
  • Черный – входной сигнал является токовым, то есть с бесконечным внутренним сопротивлением.
  • Красный – образцовый сигнал, без искажений.
Читайте так же:
Как подключит лампочку через выключатель

Входное сопротивление R3 для второй схемы подбиралось такой величины, чтобы на нём падало такое же переменное напряжение, что и на базе транзистора. Таким образом, номинал резистора R3 равен входному сопротивлению усилительного каскада. Теперь взглянем на форму сигнала:

428x336 6 KB

Для начала, вычислим коэффициент усиления транзистора в этом включении. Девиация выходного напряжения составила 7.822 вольта при управляющем 8 мВ, или 7.822/0.008 = 977. Интересно. Обратите внимание, даже для столь низкой частоты (всего лишь 1 кГц) существует задержка распространения сигнала вход-выход. Особенно этот неприятный момент заметен для случая источника сигнала с очень большим внутренним сопротивлением (черный график).

Перейдем к анализу спектра:

426x335 6 KB

реклама

Интересно, даже очень! Увеличение внутреннего сопротивления источника сигнала уменьшает уровень второй гармоники, на третьей сказывается меньше, но что творится с гармониками большего номера – их уровень возрастает! И, что особо неприятно, величина гармоник уже мало зависит от их номера, спектр искажений огромен. Но хотя в PSPICE и используются довольно точные модели, не стоит идеализировать результаты симуляции.

Предварительный вывод – радиолампы, по сравнению с транзисторами, обладают:
1. Низким коэффициентом усиления.
2. Очень большим входным сопротивлением.
3. Существенным внутренним сопротивлением.
4. Отсутствует напряжение смещения управляющего вывода.
5. Невозможна структура с противоположной проводимостью.

Про существенные размеры, старение эмиссии, необходимость накала и времени на выход в рабочий режим пока забудем – это явные недостатки, но не столь критичные.

При беглом взгляде на список создается впечатление, что лишь две позиции из пяти говорят в пользу радиоламп. Большое входное сопротивление – это бесспорный плюс, как и отсутствие смещения, но и остальные свойства — скорее их достоинство, чем недостаток. Впрочем, пройдемся по всем пунктам.

Читайте так же:
Лампа накаливания световое действие тока

Радиолампы спроектированы для работы на повышенных напряжениях, поэтому большинство свойств не являются столь плохими. Увы, современное применение радиоэлектронных устройств подразумевает нагрузку с низким сопротивлением (наушники, динамики) при широкой полосе частот, что крайне затрудняет процесс проектирования. Но трудности проектирования — проблемы разработчика и слушателя вообще не должны заботить. Главное – качество.

реклама

Извините, увлекся. Однако же, пройдемся по пунктам.

Низкий коэффициент усиления – крутизна сетки (в модели JFET «затвора») довольно низка и только за счет повышенного нагрузочного выходного сопротивления можно добиться хорошего (или сносного) коэффициента усиления.

Очень большое входное сопротивление – бесспорное достоинство, в комментариях не нуждается. Одно «но» – динамическая емкость в триодном включении портит жизнь и полное входное сопротивление на высших частотах звукового диапазона становится уже далеко не бесконечным.

Существенное внутреннее сопротивление – увы, особенности технологии. На каждую радиолампу декларируется номинальное рабочее напряжение, обычно в диапазоне 100 – 250 вольт, и сохранить ее нормальное функционирование на значительно меньших напряжениях не получится именно из-за внутреннего сопротивления.

Отсутствует напряжение смещения управляющего вывода – второй бесспорный плюс. Посмотрите передаточную характеристику «вход-выход» усилительного каскада на JFET и обычного транзистора. Для первого смещение не обязательно, а вот транзистору просто необходим сдвиг уровня примерно на 0.6 вольта. Сравните, амплитуду сигнала 8 мВ со смещением 672 мВ, цифры даже не одного порядка! Поправка, даже не двух порядков. Особо усложняет жизнь то, что напряжение смещения зависит от температуры, примерно -2 мВ/градус. Для полезного сигнала 8 мВ это будет сопоставимо с изменением температуры транзистора на 8/2 = 4 градуса. Неприемлемо.

реклама

Невозможна структура с противоположной проводимостью – проблема вакуумных элементов. Есть анод и есть катод, последний требует нагрева. Сделать противоположную структуру нельзя. Увы. Впрочем, у их близких «сородичей» JFET существуют оба варианта, с каналом n и p.

Читайте так же:
Как узнать ток светодиода в лампе

Во второй части статьи я собираюсь доказать, что недостатки радиоламп являются их достоинствами. Именно из-за них, устройств с явно посредственными свойствами, внимание не уменьшается. Конечно, радиолампы давно уже перешли в разряд «антуквариатов» (по весьма удачному выражению одного из участников старинного советского сериала «Следствие вели ЗнаТоКи»), что создает ареол элитарности. Но, если отбросить наносное — если бы у решений на радиолампах отсутствовали объективные преимущества, авантюрный интерес давно бы угас. В чем причина? Попробуем разобраться.

Параллельное включение ламп или независимая регулировка смещения.

Многие усилители имеют независимые регуляторы смещения, как было показано на рисунке выше. Аналогично при параллельном включении ламп. Прибор может быть модифицирован для работы с независимыми регуляторами смещения :

Измеритель для параллельного включения выходных ламп

Напряжение на каждом резисторе Rs является входным для компараторов и сравнивается с опорным. Установив по измерителю одинаковый ток покоя выходных ламп, мы по существу добьемся балансировки каскада.

Для параллельного включения ламп можно подключить компараторы к каждой лампе, используя общий источник опорного напряжения.

Статья подготовлена по материалам журнала «AudioXpress».

От главного редактора: весьма простая, компактная и полезная конструкция для счастливых обладателей ламповых усилителей. Кстати, этот измеритель можно встроить даже во всенароднолюбимый одноламповый усилитель Манакова (на 6Ф3П) в варианте с фиксированным смещением.

Подключив на вход измерителя вместо датчиков тока резистивный делитель, можно контролировать анодное напряжение усилителя.

Так как выходы компараторов логические, то ими можно управлять, к примеру, реле, отключая усилитель при перегрузках или нештатных ситуациях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector